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Anatomy of the canonical transformation
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A concise account of the structure of the canonical transformation is given, in the
lowest dimensional case. This case is chosen because it offers a special clarity in
several respects. In particular, the diversity of possible generating functions is
illustrated by many examples which are not available elsewhere. Many of these are
of physical interest, and some of them are multivalued. These examples are used to
inform a comparative study of the several different definitions of a canonical
transformation to be found in the literature.

The paper is pertinent to all those branches of mechanics which can be given a
hamiltonian representation. These include not only the classical dynamics of
particles and rigid bodies, but also some more recent studies in continuum
mechanics, including geophysical fluid dynamics.

An area of particular modern interest is that of symplectic integrators. These are
numerical integrating algorithms which generate a solution to Hamilton’s equations
via a sequence of canonical transformations, which preserve the hamiltonian
structure in the numerical solution.
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1. Introduction

The aim of this paper is to conduct a fresh study of the canonical transformation.
This transformation is widely known to be a classical and time-honoured device in
mechanics, but we have found that the standard texts often treat it in a way which
is either stereotyped and rather uncritical, or sophisticated and unduly difficult.
Understanding of it may be no more than formal without a reasonable variety of
explicit examples. The literature seems not to offer the variety which we have in
mind, and one of the purposes of this paper is to provide such examples.

The anatomy of a canonical transformation is revealed in the different ways by
which it can be expressed as the gradients of generating functions. Our examples seek
to bring out some attractive aspects which we have not seen elsewhere, and they
illustrate the mathematical and physical diversity of possible generating functions.

The importance of the canonical transformation derives from the fact that it is
intrinsic in any part of mathematics or mechanics where Hamilton’s equations may
appear. Arnold (1989, p. 233) remarks that the technique of generating functions,
developed by Hamilton and Jacobi, is the most powerful method available for
integrating the differential equations of dynamics. As we indicate in §3, a canonical
transformation leaves the structure of Hamilton’s equations invariant.

In recent years there has been a resurgence of interest in Hamilton’s equations,
with particular reference to the computation of numerical solutions of them, and this
part of the literature has been reviewed by Sanz-Serna (1992). Numerical integrating
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578 M. J. Sewell and I. Roulstone

algorithms generate a solution to Hamilton’s equations via a sequence of coordinate
transformations. If the latter are canonical (sometimes called symplectic), then the
numerical solutions will inherit the structural invariance present in Hamilton’s
equations. Algorithms with such a property are often called symplectic integrators,
and we give an example in §5d.

The more recent adjective ‘symplectic’ is tending to take over from the classical
one ‘canonical’. For the purposes of this paper we can regard them as synonymous.
Further elaboration of the definition of ‘symplectic’ is given by Marsden (1992,
p- 10) and Sanz-Serna (1992, §§2-5).

The trigger for the present paper lay within our investigation of the semi-
geostrophic equations of meteorology. Previous papers (Chynoweth & Sewell 1989,
1990, 1991) showed that topic to contain convexifications of multivalued Legendre
dual functions such as the swallowtail, which are adapted here to provide examples
of canonical transformations. That work itself grew from the representation of an
atmospheric front as a crease in a single-valued surface, whose gradients are
temperature and velocity, which therefore jump across the crease, and from
associated numerical solutions (Purser & Cullen 1987 ; Chynoweth 1987).

It is quite common for discussion of canonical transformations to be phrased in
terms of differentials. A differential is a local device, and carries an implication of
single valuedness if ambiguity is to be avoided. A differential may also fail to warn
that the degree of freedom within the implied domain is restricted. Our examples will
show that generating functions can often be multivalued globally, and that their
definition is sometimes necessarily restricted to a domain of lower dimension than
might be suggested by an equation expressed in terms of differentials. For these
reasons, differentials do not figure prominently in this paper, except in certain
comments on other work. Instead, our viewpoint is to emphasize the generating
functions themselves, and their derivatives.

2. Definition

The choice of definition for a canonical transformation is evidently a matter of
taste, because at least five definitions can be found in the literature. These are not
all equivalent, as we shall explain.

It is clearest to deal with the lowest dimensional case, because this offers fully
explicit examples in a way which higher dimensions, for all their importance, cannot.
We use a neutral notation, as does Carathéodory (1982) for example, which is not
biased towards any particular context. Thus we suppose that a pair z, y of real scalars
is related to another such pair X, Y by

X =X(@y), Y="Ya.y). (1)

The expressions on the right are two differentiable functions, and we have used the
same symbol for a function and its values. Thus (1) is a dependence or transformation
R* > R2,
Let
. 0X0dY oXoY

Ox dy  dy ow
denote the jacobian of (1). In general, j will also be a function j(z, y) of  and y. For

some particular transformations (1), however, this function has a constant value over
some domain in z,y space.

Phil. Trans. R. Soc. Lond. A (1993)
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Anatomy of the canonical transformation 579

We adopt the following definition for the purposes of this paper. If the
transformation (1) has
J=1 (2)
over a two-dimensional domain, we define the transformation to be canonical over
that domain. The domain need not be the whole space.
Carathéodory (1982, p. 79) says that Jacobi was the first to consider canonical
transformations, and that Poincaré used the following example in celestial
mechanics. If ¢ and k are constants the transformation

X = x°cos 2ky, Y = x°sin 2ky

has j = 2ckx*". Thus if ¢ =4, j is the constant k over x>0, and j=1if k= 1.
Therefore . )

X =ua"cos 2y, Y =a2sin2y (3)
is a canonical transformation over the half-plane x > 0.

Theorem 1. If k is a non-zero constant such that j = k over some domain, then we may
choose k = 1 without loss of generality.

Proof. If k > 0, the transformation can be rescaled by multiplying X and Y each
by k7%, which has the effect of replacing & by 1.

If k& < 0, the transformation can be rescaled by multiplying X by —(—%)" and ¥
by (—k)%, or vice versa, which again has the effect of replacing k by 1. O

This theorem means that a canonical transformation is available whenever j =
k # 0, just by rescaling of variables. The above example with ¢ =1 provides an
illustration. Evidently such rescaling cannot be performed if ¥ = 0.

Another simple example of a canonical transformation is

X=w Y=ua+y. (4)

We shall see in figure 2 how this contains hidden features of modern interest.

3. Motivation
Hamilton’s equations are

dr_ o dy_o 5
dt — oy dt o’

where the function A(z,y,t) is the hamiltonian and ¢ is time. The transformation (1)
implies, by the chain rule without using (2), that (5) have the properties

dX  oH dY _ 0H

@ @ e
where H(X, Y, t) = h(z,y,t) denotes the original hamiltonian expressed in terms of the
new variables.

Therefore a canonical transformation leaves invariant both the form of Hamilton’s
equations and the value of the hamiltonian function, by (2). This is the
straightforward historical motivation for interest in the canonical transformation.
We have mentioned the role of symplectic integrators in §1.

The transcriptions, z,y, X, Y < p, q, P, @, respectively, to notation which Lanczos
(1949, p. 196) attributes to Whittaker (1937, §126), serve as a reminder of

Phil. Trans. R. Soc. Lond. A (1993)
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580 M. J. Sewell and I. Roulstone

applications in classical mechanics, with generalized coordinate ¢ and momentum p.
Then it is said that (2) expresses incompressibility of the so-called phase space under
a canonical transformation.

Another motivation for studying canonical transformations is the importance of
incompressible plane deformations in continuum mechanics, although the connection
between the two topics is not normally exploited in either field. Water, air up to a
certain speed, rubber as an elastic solid, and metal in plastic distortion, are often
treated as incompressible media. The adjective ‘canonical’ is not usually used by
authors in this field, ‘isochoric’ being preferred by some (see, for example, Truesdell
& Toupin 1960, §40), also for a three dimensional incompressible deformation. If z,
y are the cartesian coordinates of a typical particle before deformation, and X, Y are
its cartesian coordinates afterwards, equations (1) describe the deformation, which is
incompressible if (2) holds. An example is provided by the most general homogeneous
plane deformation,

X=ar+hy+g, Y =cx+by+f,

in which a, 2, ¢, ¢, b, f are constants, so that j = ab— hc. This is incompressible if j = 1.
Simple shear is a specific example, in whicha =b=1,¢=¢ =f=0and 2 # 0. If the
coordinates in (3) are cartesian, it describes a non-homogeneous deformation which
is the bending of a rectangular block such as 0 < a <z < b, |y| < ¢ < 47 into part of
a circular annulus with @ and b as internal and external radii, and with straight
radial ends subtending an angle 4c, where a, b, ¢ are constants. This example, with
others, appears in many texts on finite elasticity, such as Green & Adkins (1960) and
Ogden (1984). Complex variable methods are used in that field, and in fluid
mechanics.

The cartesian components u,v of the plane velocity of a particle with cartesian
position coordinates z,y are expressible as

u=—0Y/%y, v=20y/ox (6)
in terms of a stream function ¥ (x,y,t) of x,y and time {, when the medium is
incompressible. After a small time ¢ the new cartesian coordinates of the particle are
approximately

X=x—e0yy/0y, Y =y+edy/0x.
This illustrates what is known as an infinitesimal canonical transformation (see
Arnold 1989, §48C), in the sense that j = 1+ 0O(e?). A specific example is provided by
steady flow past a circular cylinder of radius a, for which

¥ = cyla®/(@* +y*)—1) (7)
when the stream has speed ¢ at infinity in the direction of the z-axis. An infinitesimal
canonical transformation is only an approximation to a true canonical trans-
formation. To obtain the latter in incompressible fluid mechanics, one must integrate
the motion to express the spatial (eulerian) coordinates in terms of the material
(lagrangian) coordinates.

In these ways the kinematics of plane incompressible media offer many examples
of canonical transformations.

4. Anatomy

We return to the neutral general notation of §2. A canonical transformation has
a locally unique inverse in the neighbourhood of every point of its domain, because
j =1 is sufficient for the inverse function theorem to apply (see Apostol 1974,

Phil. Trans. R. Soc. Lond. A (1993)
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Anatomy of the canonical transformation 581

Theorem 13.6). Even when the functions in (1) are single valued, however, the global
inverse of the transformation, which we write as

v=uxX,Y), y=yX7) (8)

in terms of differentiable functions on the right, need not be single valued. An
example is the inverse of (3), which is

x=X?*4Y? y=~Larctan Y/X. 9)

We must restrict the domain of (3) to a principal half-strip such as « > 0, |y| < ir to
ensure that (9) is also single valued globally. The domain of (9) is then the half-plane
X>0,allY.

Such global multivaluedness of the inverse can be more elaborate in its details in
other cases, such as Examples 2 and 3 of Whittaker (1937, §126).

Aside from this type of complication, however, the canonical transformation is a
bland device in the sense of being always non-singular. We define a singularity of (1)
to be a location in the z,y plane where j = 0 or + co.

This bland exterior conceals some variety of anatomical detail within the
canonical transformation which we now seek to explore. It is convenient to define an
internal singularity of a canonical transformation to be a location where one or more
of 0X/0x, 0X /0y, 0Y/0x, 0Y /0y is zero or infinite. These often occur even though
7 =1, and we have to allow for that. For (3) over the principal half-strip, internal
singularities are isolated along x =0 and along y = 0. For (4) 0Y/0x =0 along
x =0, but 0X /0y = 0.

Theorem 2. 4 canonical transformation (1) with (2) can be expressed locally in one
or more of the following versions, when the indicated sufficient condition holds.
(i) If 0Y /0y # 0, + o0, then X = X(x,Y), y = y(x, Y) such that

0X/0x = 0y/0Y. (10)

(ii) If 0X /0y # 0, + 0, then y = y(x,X), Y = Y(x,X) such that
O0y/0X +0Y/0x = 0. (11)

(iil) If 0X/0x # 0, + o0, then x = 2(X,y), Y = Y(X,y) such that
Ox/0X = 0Y/0y. (12)

(iv) If Y /0x # 0, £ o0, then X = X(Y,y), x = 2(Y,y) such that
0X /0y +0x/0Y = 0. (13)

Proof. Suppose that 0Y/0y # 0, +oo. Then (1), can be inverted as y = y(z,Y)
uniquely locally in (10), and substituted into (1), to give the new function X(x,Y) =
X(z,y(x,Y)) in terms of the old function X(z,y). The chain rule applied to new and
old functions gives

X X Xy oY Yy oY oy

—_— —f—— =t < 1=—=-£

= Tgae T 0=5 T A 3y oy
oX X AXOY oY .3y

Now using (2) gives the last equation in (10).
Similar reasoning leads to (11), (12) and (13). O

Phil. Trans. R. Soc. Lond. A (1993)
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582 M. J. Sewell and I. Roulstone

There may be locations where not all of the hypotheses in (i)—(iv) hold, and yet
j=1.

There might also be locations where none of the hypotheses in (i)—(iv) hold, and yet
still = 1. For example, it could happen that 0X/0x =0, 0Y /0y =00, 0X/3y =0,
0Y/0x =0, all such that j = 1.

In thermodynamics, the last equations in (10)—(13) are called Maxwell’s relations,
an example which we give in §5c¢.

Theorem 3. For each part of Theorem 2 which is available, there exists a scalar
generating function listed below, allowing the canonical transformation to be expressed
in gradient form as follows, and locally so in the first instance.

(i) A(z,Y) such that

X =04/0Y, y=204/0x. (14)

(i1) B(x,X) such that
y=—0B/0x, Y =0B/0X. (15)

(iil) C(X,y) such that
x=—0C/0y, Y =-0C/0X. (16)

(iv) D(Y,y) such that
X=-0D/0Y, x=0D/0y. (17)
Proof. The last conditions in (10)—(13) are integrability conditions which are,
respectively, necessary and sufficient for the properties (14)—(17). O

The generating functions in Theorem 3 are available locally and as single-valued
functions in the first instance, but we shall give examples showing how they can be
available globally, and as multivalued functions, capable of self-intersection such as
figure 5 illustrates in particular. The idea of generating functions is well known in the
literature on classical mechanics (see Goldstein 1950, ch. 8; Synge 1960, §88), but the
variety of their possible forms which we shall indicate here is not.

It can be shown that a time-dependent canonical transformation preserves the
form of Hamilton’s equations provided the value of the hamiltonian function is
augmented by the partial time derivative of a generating function.

Theorem 4. When any two of the generating functions having one argument in
common exist, they are connected by a Legendre transformation which relates the non-
common arguments as active variables, while the common one is passive.

Proof. Suppose that (1) has the properties
0Y/0y #0, £ 00 and 0X/0y # 0, + o0. (18)

These are sufficient for (14) and (15) to apply locally, by Theorems 2 and 3. We
recognize there the standard form of mutual inverses
X=04/0Y =X(x,Y), Y=0B/oX =Y(z,X)
expressible via a non-singular Legendre transformation whose dual functions 4 (z, Y)
and B(x, X) are related by
A+B=YX and 04/0x+0B/ox=0. (19)

That (18) are sufficient to justify the inversion between the dual active variables is
confirmed by

95 = M 5& O’ i 00.

oY oY/oy
Gradients of the functions (1) are on the right here, and of X(z,Y) on the left.

Phil. Trans. R. Soc. Lond. A (1993)
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Anatomy of the canonical transformation 583

YNpagpr Y

Figure 1. Quartet of Legendre transformations.

A similar argument applies when the three other pairs (15)+ (16), (16)+(17), and
(17)+ (14) are available in turn. O

Theorem 5. When all four of the generating functions in Theorem 3 exist, they are
related by the closed quartet of Legendre transformations represented mnemonically by
figure 1, and analytically in (20). Each pair of functions is connected by a line
representing a Legendre transformation whose active variables, participating in the
gradients of the respective functions, are written next to the arrows on that line. The sum
of the functions is equal to the product of the active variables. That is,

A+B=XY, X =04/0Y, Y =0B/X,
B+C=—xy, «=-00/0y, y=—0B/0x,

(20)
C+D=-XY, X=-0D/0Y, Y=-0C/dX,
D+A4 =uy, x = 0D /0y, y = 04 /0.
Proof. The result is a résumé of (14), (15), (19) and their counterparts. O

Figure 1 is another example of a general scheme explained by Sewell (1987, fig.
2.18) for closed chains of Legendre transformations connecting scalar functions of
n+m variables. Here » =m = 1. Particular examples of such quartets in the
mechanics of solids and fluids are given by Sewell (1987), and in meteorology by
Chynoweth & Sewell (1989, 1991). The local shapes of the functions are related: e.g.
if D is jointly convex so is —B, and then 4 and C are complementary saddle
functions.

The globally valid functions which generate our first example (3) of a canonical
transformation are as follows. We treat the power  as designating only the positive
square root, so that (3) is single valued over > 0. To ensure that (9) is single valued
we consider only |y| < jn. Then

A(x,Y) = ke arcsin Y/at 4+ 1Y (x — V2 over x=Y?% all Y,
B(x,X) = —ix arccos X /at +1X (x — X?)2 over x=X? X>0, 1)
C(X,y) = —1X? tan 2y over |yl<im, X >0,
D(Y,y) = —1Y? cot 2y over |yl <im, all Y.

It is convenient to derive D(Y,y) first, by integration of (17), after inverting (3), as
Phil. Trans. R. Soc. Lond. A (1993) .
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=+ 2(Y—y)%

Tigure 2. Legendre quartet for X = x, ¥ = 2*+y.

a* = Y/sin 2y. The fact that 0Y/dx = 1y %sin 2y shows that there is an internal
singularity at # = 0 and at y = 0, and the latter manifests itself in the infinite jump
in D(Y,0). To find the other three functions requires no more integration, but just the
first column of (20) in conjunction with appropriate inversions of (3); or (3),.
Evidently C(X,y) and A(,Y) are also single valued, but B(x,X) is double valued
because we have used the inversion of cos 2y = X/a% in |y| < . This is shown by the
three vertical sections # = const. in figure 3a which join the line X = 0, B = —jnx to
a vertical tangent plane where x = X?, B = 0. Curiously, Carathéodory (1982, p. 79)
gives the value 2z sin 4y —zy of B in terms of « and y, but not the generating function
B(z,X) itself, which is the real point of (15).

The only internal singularities in the foregoing example are isolated, along x = 0
and along y = 0. The hypotheses of Theorems 2 and 3 fail there ; but those hypotheses
are only sufficient, and not necessary, for the inverse function theorem to hold. The
example shows how, in a specific case, the construction of globally valid generating
functions may not be inhibited by isolated internal singularities.

The quartet of Legendre transformations which reveal the anatomy of the
canonical transformation (4) are summarized in figure 2. There are no internal
singularities associated with 0X/0x = 1 and 0Y /0y = 1, so (14) and (16) with (4) can
each be integrated to give the generating functions 4 and C stated in figure 2, over
the whole z, Y and X,y planes respectively. These two functions each have the form
of the fold catastrophe potential in its simplest cubic version. The internal
singularity of 0Y/0x = 0 at « = 0 is an isolated singularity of each of the lower two
Legendre transformations (20); and (20), in figure 2, but this does not inhibit the
construction of the double-valued function D = F (Y —y)? with cusped edge of
regression along Y = y illustrated in figure 3b. This has a horizontal tangent plane
where Y = y, by contrast with the vertical tangent plane of B(x,X) where x = X? in
the previous example. The form of figure 3b is also the bifurcation set of the cusp
catastrophe potential

V() = 136 —3(Y —y) €+ DE,
where £ is a dummy variable. The bifurcation set in the D, Y —y parameter space of
this function is defined by eliminating £ from 0V/0§ = 0?1V /0§% = 0. It is shown by
Sewell (1987, §2.3) that this bifurcation set is the Legendre dual of the fold

catastrophe potential derived above in 4 and C, and that this result is part of a
general ‘ladder for the cuspoids’.

Phil. Trans. R. Soc. Lond. A (1993)
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(@ B () D

Figure 3. (a) B(x,X) of (21),; (b) D(Y,y) = $§(Y—y)%.

The internal singularity 0X /0y = 0 of (4) is not an isolated singularity, so that the
inverse function theorem cannot be resurrected in the way that is possible for the
foregoing isolated singularities. Parts (ii) of Theorems 2 and 3 fail in the stated forms.
Nevertheless, the upper two Legendre transformations in figure 2 can still be
reconstructed by using the more basic definition of a Legendre transformation in
terms of poles and polars (see Sewell 1987, §2.2). Each of 4(x,7Y) and C(X, y) is linear
in the variable now required to be active, namely Y and y respectively, and the dual
of these polars is the single point, with abscissa # = X and ordinate 12® = 1X3, read
off from the first two equations of (20), and (20),, which do survive. The generating
function B(z, X) still exists, therefore, but only over a domain of lower dimension
(one instead of two), and so must be handled appropriately. One may not know in
advance which generating functions have this limitation.

This means, for example, that care is required if differentials are used. For
example, although d4 = ydx 4+ XdY can be rewritten as dB = —ydxz+ YdX with B =
XY—A, we cannot infer (15) because z and X are not independent. We avoid
differentials in this paper except in (51), (52), (55) and (56), preferring a more explicit
description in terms of functions themselves.

The foregoing properties of the example (4) of a canonical transformation can be
generalized in the following direction.

Theorem 6. The most general canonical transformation in which X is a function X (x)
independent of y and having finite non-zero slope dX/dx must be of the form

X=X@), Y= (y 3§)/dx (22)

at least locally, where f(x) is an arbitrary differentiable function.

Proof. The hypothesis of part (iii) of Theorems 2 and 3 holds, so C(X, y) exists such
that 0C /0y = —x(X), where z(X) is the single-valued local inverse of X (z). Integrating
gives C(X,y) = —ya(X)—b(X), where b(X) is an arbitrary function of X. From (16),

_dx  db dg
Y_yﬁ+ﬁ_(y+dx)/dx

Here f(x) (X(x)) is an arbitrary function of z, having the values of the
generating funetlon B(x,X) which is defined only on the curve X = X(x) in the 2, X
plane. O
Phil. Trans. R. Soc. Lond. A (1993) )
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586 M. J. Sewell and I. Roulstone

Thus the second function in (1) must be linear in y if the first does not contain y
and the transformation is to be canonical.
Then 0Y /0y = dx/dX is also finite and non-zero, so that

A, Y) = YX(@)—B(@)
exists satisfying (14) and the first of (20). For D(Y,y) to exist it is sufficient that
(dX)2 Yy dXdZ,b’_( dﬂ) d2X

dz) ox  dada? dz) da?

be finite and non-zero. The values of D are those of
D =xy—XY+p.
For example, if X = x and f = (2n+ 1)"* 2®""! with positive integral n, then
Y=y+2*" and D =T [2n/(2n+1)] (¥ —y)CntD/2n

We have n =1 in (4) and figure 3b.

Another example of some particular interest occurs if £ is a constant, or =0
without loss of generality. Then (22), is homogeneous linear in y (cf. Carathéodory
1982, §110) and

D = YZ(y/Y), (23)

where the function Z(-) is the Legendre dual of X(x). This is still true even when
X =z so that 0Y/0x = 0, for then D = 0 and Z(1) = 0. The latter point is the pole
of the polar X = x. The canonical transformation,

X =1 Y=yx? (24)
has the globally valid generating functions
A=Y, C=—yB3X) D=23Vy/V)

with B = 0 defined only on the curve X = 3z3.
In the next theorem we use suffixes to denote second derivatives of generating
functions.

Theorem 7. Whenever one or more of the four generating functions are available, we
can express the first derivatives of a canonical transformation (1) in terms of the second
derivatives of the generating functions as follows:

Y 1 Byx CyxC D
oy Ay By, v Cxy Dy, 20)
X Ay, 1 Cy DyyD
= =— = =—Dy, +———Y 26)
ay AxY BXx CXy vy DYy (
ax = Y_M _Bm = __1_ = _DYY (27)
O0x ’” A,y By, Cxy Dy,
oY A ByxB C 1
—=_Tz . p _“XX"rr XX ___ __ 28
ox A,y Xz B, Cxy Dy, (28)

Phil. Trans. R. Soc. Lond. A (1993)
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Anatomy of the canonical transformation 587

A sufficient condition for the four A formulae to apply is that A, be finite and non-
zero; and similarly for By, Cy,, Dy,.

Proof. Suppose 0Y /0y # 0, + o0, so that (10) and (14) apply, at least locally. Then
04/0Y = X(x,Y), 04/0x =y(x,Y). (29)

Inserting the inverse Y = Y(z,y) of y = y(x,Y) into (29),, and differentiating with
respect to ¥ and z using the chain rule, gives

1=A4,,0Y/dy, 0=A,,+A,, 07/

Inserting ¥ = Y(x, y) into (29), recovers the original X = X(x, y), and differentiating
that with respect to « and y using the chain rule gives

oX Y oX oY
EE—AxY'*'AYYa’ @"‘ YY@"
The formulae stated in (25)—(28) in terms of A(x,Y) emerge, under the single
hypothesis that 4,, # 0, + 0.
The other formulae in terms of B, C and D are obtainable by similar calcu-
lations. O

That a transformation (1) is canonical when the 4 formulae in (25)—(28) apply can
be confirmed by direct calculation that j =1, and likewise for the B, ¢' and D
formulae. We have not seen formulae (25)—(28) elsewhere.

5. More examples
(@) Hodograph-related transformation

When the cartesian components u,v of the plane velocity of a particle in a
continuous medium are expressed as

w=uzy), v="0y) (30)

in terms of functions on the right of the cartesian coordinates x,y of the current
position of the particle, such a representation (30) is called the hodograph
transformation from the physical space to the velocity space. The time is absence in
steady flow, but it is present in unsteady flow, then acting as a parameter whose
variation generates a sequence of hodograph transformations. The so-called
hodograph method is a standard practical device in fluid mechanics (see Milne-
Thomson, 1955, §20.3), and Whitney’s theorem (1955) shows that the fold and cusp
are the only stable singularities of (30) (cf. Sewell 1987, p. 158).

When the fluid is incompressible, (30) becomes (6). Comparison with (17), for
example, and transcribing the neutral variables there to the physical ones here
according to the scheme

D Y y X «x
-y x oy v wu

shows that the stream function acts as a generating function leading to a canonical
transformation
v=ou,y), *=2x(u,y) (31)
Phil. Trans. R. Soc. Lond. A (1993)
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588 M. J. Sewell and I. Roulstone

Figure 4. Legendre quartet in semi-geostrophic theory.

in terms of the fluid variables. This example is always available, except possibly near
a point where 0% /0x 0y = 0 or + 00, but even this might not be a global difficulty.
The particular stream function (7) generates, from (6), the velocity field

u=c—ca’(x*—y*)/(@*+y*)’, v=—2ca’xy/(x*+y*)* (32)
with O [0wdy = —2¢a’x(2® —3y*)/ (2" +y*)°.

The singularity Dy, = 0 thus occurs locally where x = 0, + 3%, Equation (32), can
be solved as

a? = — (P +A) £ (4Ay2+ A2 where 2A = ca®/(u—c)

to obtain (31),, and (31), follows by substituting in (32),. This illustrates how a
multivalued canonical transformation can result from a rather simple and single-
valued generating function (7).

(b) Semi-geostrophic theory

The semi-geostrophic theory of meteorology provides a recent example of a
generalization of figure 1, given by Chynoweth & Sewell (1989, 1991), which can
contain singularities, and which is summarized in figure 4 in its own notation. Here
x is a horizontal position vector in physical space, and the scalar z is a measure of
height; M is a horizontal momentum vector, and 6 is a measure of temperature. The
transcriptions indicated by a direct comparison with figure 1 are

X Y « y A B ¢ D
M x 6 — T R -8 -—-P

Each pair of arguments in figure 4 consists of a scalar with a vector, as distinct from
the pairs of scalars in figure 1.

The scheme summarized by (20) again applies, but generalized to allow for the
presence of vectors. For example, there is a Legendre transformation between

Phil. Trans. R. Soc. Lond. A (1993)
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Anatomy of the canonical transformation 589

R(6, M) and P(z,x) at the top and bottom of figure 4, with all arguments active,
having the properties
R+P =M x+02,

OR/30 = 2(6, M), QAR/OM = x(6, M), (33)
AP /dz = 6(z,x), OP/ox = M(z, x) (34)

(see Chynoweth et al. 1988; Purser & Cullen 1987).

The particular case of flow in a single vertical physical plane is commonly studied,
and often with the objective of modelling the trace of an atmospheric front in that
plane. The vectors M and x are now replaced by their scalar component values M and
x. In general (33), can now be inverted and substituted into (33), to give a canonical
transformation,

M=M®0, —z), x=ux0,—2), (36)

generated, for example, by E(6,M).
A specific illustration is provided by the parabolic umbilic polynomial,

R(O,M) = {M*+MO*+ oM* + pO?, (36)
in which « and £ are given parameters. This leads via (33) to
z2=20M+p), x=DM~+20aM+06°,
which can be rearranged as the canonical transformation
M=2z/20—p8, x=(2/20—p)°+2a(z/20— )+ 6> (37)

The property
OM,x)/0(0, —2) =1 (38)

can be immediately verified directly. The function (36) was used by Chynoweth et al.
(1988) and Chynoweth & Sewell (1989) as a starting point for calculating its Legendre
dual function P(z, ), because the latter has a self-intersection line whose projection
onto the physical x,z plane models the trace of an atmospheric front; across this
there are jumps in the temperature and wind speed, which are represented by the
gradients 6 and M of P(z, x) in (34). From the viewpoint of canonical transformations,
(37) is therefore an example of one which is derivable from a multivalued generating
function P(z,x) possessing self-intersections. Convexification can then yield a single-
valued version of P(z, x) possessing a crease, representing the atmospheric front. This
function, and the associated generating functions 7'(6,x) and S(z,M), are shown
graphically by Chynoweth & Sewell (1989).

In a second and different illustration Chynoweth & Sewell (1989) emphasize the use
of a variety of choices of S(z,M) as a starting point for the construction of frontal
models, because they also lead to self-intersections in P(z,x). Canonical trans-
formations (35) are generated by such S(z,M) via

—08/0z = 0(2,M), 0S/OM = x(z, M) (39)

followed by inversion, either of (39), to substitute M (6, —z) into (39), to achieve (35),
or of (39), to substitute z = 2(M, x) into (39), to achieve

0=060M,x), ==z0M,z). (40)
The single-valued
S = M+ e (1)
Phil. Trans. R. Soc. Lond. A (1993)
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590 M. J. Sewell and I. Roulstone
provides an illustration generating the canonical transformation
0=—W? —z=3iM—x/M, (42)

which is an example of (22). It is easy to verify that
00, —2)/0M, x) = 1.

The other three generating functions are shown in fig. 2 of Chynoweth & Sewell
(1989) to be a swallowtail-shaped and therefore triple-valued P(z, x), like figure 5
here, a double valued Cayley-Whitney umbrella 7'(0, ) = + a(—26):—162, and R =
&M* defined only on the parabola § = —1M*. Convexified and therefore single-valued
versions of these can also be constructed.

(¢) Thermodynamics

The four thermodynamic potential functions provide a classical example of
figure 1. The Legendre transformations can contain isolated singularities, and the
generating functions can be multivalued. This applies, in particular, to the van der
Waals fluid, in which the Gibbs free enthalpy function G(7', p) of temperature 7' and
pressure p is swallowtail-shaped and therefore triple valued (see Sewell 1987, §2). The
transcriptions between our neutral notation and a common thermodynamic notation
are

X Y 2y 4 B C D
S T v p —F U —H G,

where § is entropy, v is specific volume, F is free energy, U is internal energy and H
is enthalpy. Therefore the relations

S=8w,p), T=1T(,p) (43)

provide another example of a canonical transformation.
A simpler example than the van der Waals fluid is the ideal gas, for which

U,8) = c,v" 7 exp ((S—s)/c,),
where vy, s and ¢, are given constants. From its gradients (15)
T'=v"7exp (S—s)/c,), p=(y—1)c,v7exp (S—s)/c,).

Solving the second of these for § and substituting into the first gives the canonical
transformation
S=s+c,Inpv?/(y—1)c,, T =pv/(y—1)c,. (44)

This time it is easily verified that
oS, 1) /0w, p) = 1.

(d) Numerical integration

A comparison, given by Miller (1991), of two different numerical integration
schemes indicates that the more reliable one is that which generates the solution via
a sequence of canonical transformations (such a scheme is called a ‘symplectic
integrator’), in contrast to the one which does not preserve such a sequence. The
former scheme is called a time-centred leapfrog

WD = D g (D) = ) gy (kD (45)

Phil. Trans. R. Soc. Lond. A (1993)
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Anatomy of the canonical transformation 591

Here « denotes momentum per unit mass of a pendulum located at x, the force per
unit mass is f which depends on «, and t is the integration time-step. Values at the
old time-step are denoted by %, and those at the new one by n+ 1. The less reliable
scheme is a predictor—corrector one.

The essence of the idea is to treat an iteration

2 5 gD g (=) g () (46)
with f™ depending on 2™, as a transformation (1) via the transcriptions

X Y x Y

M)ty ) (=)

Then writing f™ (™) = F(z), (1) becomes
X =ax+*F(x)+ty, Y =tF(x)+y. (47)

It follows directly that j = 1, and since ¢t # 0, that (10), (11), (14) and (15) always
apply with

A(x,Y)=xY+§tY2—th(g)dg, B(x,X) (X—x)2+th(§)dg, (48)

1
2t
where £ is a dummy integration variable.

To find the other two generating functions requires further information about

F(x). For example, dF /dx # 0, + oo is sufficient for a unique local inverse F~(-) (say)
to exist such that

(Y —y)/t
g =—pr—o[ e (49)

Again, writing G(x) = x+*F(x), then dG/dx # 0, + oo is sufficient for a unique local
inverse G71() (say) to exist such that

Xz X—ty
O.y) =40 f G1(E) de. (50)

6. Alternative definitions

Here we comment briefly on some of the other definitions of a canonical
transformation which were referred to at the beginning of §2.

(a) Existence of a generating function

If a differentiable function B(z, X) of independent variables x and X exists and is
single valued, and if (15) holds, then its first differential is unambiguously

dB =YdX—ydx. (51)

Carathéodory (1982, §86) begins with a definition that looks like this, i.e. that the
transformation (1) is canonical if B exists such that (51) holds, except that his B is
a function of x and y, not  and X. He moves quickly to a definition that, in the lowest
dimensional case, is equivalent to our j = 1.

Phil. Trans. R. Soc. Lond. A (1993)
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592 M. J. Sewell and I. Roulstone

We can see from Theorems 3 and 7 that it might seem reasonable to adopt a
definition of the following type. ‘The transformation (1) is canonical if at least one
generating function exists, say B(z, X), with properties represented by (15) with
B,y #0, +00.” However, this uses the benefit of hindsight, it is unsymmetrical in
requiring four options to be checked out, and it entails more assumptions about the
differentiability of (1) than does the very direct definition that j = 1. So such a
definition implies j = 1, but is not implied by it, and therefore the two are not
equivalent.

Moreover, we have deduced that generating functions can be multivalued, can
possess self-intersections, and can be restricted to domains of less than the fully
permitted dimension. It would be difficult to describe these global and local
specifications in advance.

The following question is a prototype of one which arises in the study of contact
transformations (Carathéodory 1982, §120). What transformations of type (1) can
have the property

YdX = ydx (52)

of local invariance of this particular differential form, and can they be described as
canonical in some sense ? From the discussion after Theorem 6 we can see that any
transformation of the form

X =X(z), Y=y/(dX/dz) (53)

with dX/dx # 0, +oo satisfies (52) and has j= 1. The associated generating
functions are

A(@,Y) = YX(x), OX,y)=—yxX), D(Y,y)=YZ(y/Y), (54)

with B(x, X) = 0 defined only on the curve X = X(x). The inverse and the Legendre
dual of X(x) are x(X) and Z(-) respectively. Thus (52) implies j = 1, and also that
B(x,X) is defined only on a restricted domain and has the value zero there.

(b) Imvariance of a circuit integral

If B(z, X)) has a single-valued branch over a closed curve drawn in its domain, then
it follows from (51) that

éYdX, = %ydx, (55)

where the circuit integrals are each evaluated around the lifted version of the curve
drawn on the considered branch.

This result expresses the invariance of the circuit integral under the transformation
(1) which is obtained by inverting y = y(x, X) given by (15), as (1), and inserting into
(15),.

Similar hypotheses on A(z,Y), C(X,y) or D(Y,y) lead to similar invariance

properties
%XdY=—§ydx, %YdX=—§xdy, %XdY=§xdy, (56)

respectively.

Another possible definition is the following. ‘The transformation (1) is canonical if
at least one of the invariance properties in (55) and (56) holds.” According to Arnold
(1989, §§44E and 45A), a definition of this type is the generally accepted one, and
implies others which he quotes (cf. Schutz 1980). Even if it is taken to imply the

Phil. Trans. R. Soc. Lond. A (1993)
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Anatomy of the canonical transformation 593
D

Figure 5. Swallowtail D(Y,y).

existence of a single-valued generating function, when reference to the lifted version
of the circuit becomes redundant, it is not equivalent to the other definitions
reviewed here, and it is subject to the following qualifications.

We have given specific examples in §§5b6, ¢ in which D(Y,y) has the swallowtail
shape of the general type represented in figure 5. It must be a reasonable expectation
that a generating function has global multivaluedness, e.g. of the type shown in
figure 3 or figure 5, or worse in higher dimensions.

In such circumstances, if one seeks to use invariance of a circuit integral such as
(56), as the defining property of a canonical transformation, one must decide which
single-valued part of the multivalued generating function is to receive the lifted
circuit. It may be that at least one of the four generating functions is always globally
single valued, but in the absence of a theorem which identifies which one, there is an
inherent ambiguity in the use of circuit integral invariance as the definition of a
canonical transformation. Definitions phrased in terms of manifolds, which are single
valued 4pso facto, may offer only formal understanding.

(¢) Invariance of the Poisson bracket

Let F(X,Y) and G(X,Y) be any two differentiable functions of X and Y. Their
Poisson bracket is defined to be

TAXY wvax

Suppose the transformation (1), whether canonical or not, converts F and G into two
new functions
fle,y) =FX,Y) and g(z,y) = GX,Y) (57)

without changing their values. The Poisson bracket of the new functions is

Theorem 8. 4 canonical transformation (1) with (2) will leave the value of the Poisson
bracket invariant, i.e.

[F,G]=[f.9], (58)
when the sufficient hypotheses of Theorem 2 hold.
Phil. Trans. R. Soc. Lond. A (1993)
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594 M. J. Sewell and I. Roulstone

If (58) holds for a transformation (1) which is not required to satisfy (2) a priori, then
either j =1 or
oFdg of oG
= J_JT 59
Xy oyoX 0. (59)
under the same sufficient hypotheses.

Proof. Suppose that 0Y /3y # 0, + co in (1), so that, at least locally, there is a single-
valued inverse y = y(z, Y) which can be used in (1), to give X = X(«, Y). Then (57) can
also be expressed as new functions f(z, Y) and g(z, Y) say, respectively, in terms of
and Y as independent variables. The chain rule then gives

of _fdy _OF OFOX g _dy _0GX

Y oydY oY 0X0Y' dx Oydwr 0X Oz
in terms of the derivatives of y(z, Y) and of X(x,Y). Hence

(e, dot) RO 100k o) 05y
Oy \Ox Oy ox oY oXoY

X oyoY”
Similarly, by interchanging the roles of f and g, and of F and @,

9 %Jr%a_y) _0goroX oF (§+§@_X) _O0Fdgdy
y\ox " dyow Y T axoy)  aXoyoy

T yoXoxr' X
Subtracting this latter pair of equations from the previous pair gives
oFog of OG) oX 0Fdg of oG

TyoXox® X

_ (OF0g 09f G\ oX _(OFdg 09f3G\ oy
[f’g]_(axay dyox) oz’ [’G]_(axay aan)aY‘

Hence, after using a result derived during the proof of Theorem 2,

_ _(9F3g _of 3G\ dy
/9] [F’G]‘(axay aan)aY

without yet assuming that the transformation (1) is canonical, and in which dy/0Y
#0, +oo. Similar formulae will follow from the other three hypotheses in
Theorem 2.

Now using j = 1 for the first time in the proof delivers (58). Conversely, if (58) is
assumed without (2), then we deduce from (60) or one of the three similar formulae
that either j = 1 or (59) holds. O

G=1 (60)

Occasionally the following definition is adopted, without requiring j =1, for
example by Sudarshan & Mukunda (1974) and Woodhouse (1987). ‘The trans-
formation (1) is canonical if (58) applies for every pair of functions (57).” This is
designed to exclude the possibility of (59). The purpose of Theorem 8 is to clarify
comparison with our definition which just requires j = 1. The formula (60) will help
the reader to make his or her own judgement about the choice of definition.

(d) Invariance of hamiltonian structure

Some authors, including Synge (1960, §87), start with the following definition:
‘The transformation (1) is canonical if it leaves invariant both the form of
Hamilton’s equations (5) and the value of the hamiltonian function’. We have
already indicated this, in §§1 and 3.

Phil. Trans. R. Soc. Lond. A (1993)
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Anatomy of the canonical transformation 595

(e) Contact geometry

Whittaker (1937) does not use the term ‘canonical transformation’. Instead
(p- 290) he uses ‘contact transformation’ following Lie, in the context of wave fronts
in particular, and he applies this name to our example (3) of a canonical
transformation. Goldstein (1950, p. 239) treats the two terms as synonymous.
Plainly they are not so, however, if a contact transformation is defined in terms of
reciprocation. For a Legendre transformation can be defined as a mapping between
the envelope of a polar plane and the locus of a pole. In that sense it is a contact
transformation, but it is certainly not a canonical transformation in the sense of
J=1. Also, a Legendre transformation can be a mapping between sets of odd
numbers of variables just as easily as even numbers (e.g. pairs). We have not needed
otherwise to invoke ideas of contact geometry, except for the remark at the end of
§6a, and we defer further comment on that large subject.

7. Higher dimensions

The main purpose of this paper has been to learn from the explicit precision and
examples which can be displayed for canonical transformations of the plane onto the
plane. We shall not pursue here the arguments of very different styles which are
required in higher dimensions, such as are found in Carathéodory (1982), Synge
(1960) and Arnold (1989), for example. Instead we conclude with a higher dimensional
version of Theorem 7, which we have not seen elsewhere.

Suppose that a pair of n-tuples z,,...,x, and y,,...,y, of real scalars is related to
another such pair X,,..., X, and ¥,,..., Y, by
X=X, yy), Y, = Yi(x;, ). (61)

An isolated suffix takes each of its values in turn, so that the expressions on the right
represent 2n differentiable functions, each of 2n variables, and the same symbol is
used for a function and its values. Thus (61) generalizes (1).

Theorem 9. Suppose that the determinant
[0Y;/0y,| # 0, & c0. (62)

Suppose also that a twice differentiable scalar generating function A(x;,Y)) exists such
that

Then the first derivatives of (61) can be expressed in terms of the second derivatives of
A(x;, X)) by the following formulae.

J
0Y,/0y; = Azy,, OY/0w;=—Azl A (64)

@y

0X,/0x; = Ayix, _AY,Y,CA;;YkAz,zp 0X,/%y; = AYiYkA;jlY,C' (65)
The inverse notation is explained in the proof. Summation is implied by a repeated suffiz.

Proof. Condition (62) is sufficient for the inverse y, = y,(x;,Y]) of (61), to be
uniquely available locally. This inverse is on the right of (63),. Therefore inserting
(61), into (63), and differentiating with respect to y; and z;, using the chain rule, gives

Oy = Ay, 0%/0y;, 0=A4,,+4,y 0Y,/0x. (66)

x4
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596 M. J. Sewell and 1. Roulstone
Inserting (61), into (63), recovers the original (61),, so differentiating (63), with
respect to x; and y;, using the chain rule, gives
N, L W W,
ox Yorg DEYiYe e dy, ViYeQy,

i
To solve these, we first notice by taking the determinants of (66), that (62) is
equivalent to

=4

(67)

|4

Hence the symmetric n X 7 matrix with typical component 4, y, = 0?4 /0x;0Y), is
non-singular, and therefore has an inverse, whose typical component we denote by
A3y, (this is not the reciprocal of the typical component 4, v itself). Hence

“le;,.lyjfilaoiy,C = 8jlc' (69)
Therefore (66) gives (64), so that (67) gives (65). O
The jacobian of (61) can be denoted by
J =0, X;)/0(x, yy)-
By the chain rule for jacobians, under hypothesis (62),
0(X,, ¥) 0y, Y;) _ O(Xy) O(Yy)

)T @ B) Ay o) Ay,

2wy, 0, o0, ' (68)

in the alternative notation for jacobians. Therefore the jacobians of the right sides
of (63) satisfy

o) _ 9(w)

= ) 70
o) 7 ™)
Therefore, if (61) is canonical in the sense that j = 1, (70) becomes

o) oY)’

which is an integrability condition necessary but not (unless n = 1) sufficient for the
existence of A(x;, ¥;) hypothesized in (63).
Sufficient integrability conditions when n > 1 are conveniently expressed by

changing the notation to the sets
{2 =X, ¥}, {zgp={wpy for o,f=1,....2n

Then if the 2n functions Z,(z4) each of 2n variables satisfy

0Z,/025 = 0Z4/0z, forall a,p, (72)
there exists a scalar function F(z,) such that
Z,=0F/0z,. (73)

Necessity of (72) (and hence (71)) is obvious. Sufficiency is based on choosing a datum
point {a,} and constructing the function

2

2n
F(zg,...v200) = 2 | Zy(21seees 2015t Qs 5 Qgy) L. (74)

a=1Ja,
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Anatomy of the canonical transformation 597

By using (72) we see that this has the gradients

oF
5;/; = Zﬂ(zl, ceey zﬂ, aﬂ+1> e a2’n)
%07
# 3 [P st )
a>pJa,
= ﬂ(zl, ceey Zﬂ, aﬂ+1> ceey a’zn)
% 0Z
+ 3 [ Bt L
a>pJa, Y

=Zg(R1s 524 giys-nn, Aay)

T 2 (2215 20 Qgrs ooy Qo) = Zigl(21, 3 25y Ay v, Bgy) ]
a>g

=Z21, - 23n)-

We thank Dr D. S. G. Stirling for drawing our attention to this construction. Quite
different looking versions of an associated result are known as Frobenius’s theorem
(see Schutz 1980; Flanders 1963).

8. Conclusions

In this paper we have given some new examples of canonical transformations. We
have shown that the generating functions of such transformations can be globally
multivalued, like the swallowtail, in some cases, and that the dimension of their
domain of definition can be restricted, in other cases. Some of these examples spring
from a meteorological context, in the analysis of atmospheric fronts. Another reason
for interest in canonical (sometimes called symplectic) transformations stems from
their role in symplectic integrators. These are numerical algorithms, based on
generating functions, for the solution of equations of hamiltonian type, which
preserve the hamiltonian structure during the approximation.
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